Statistics

Lecture 5

Feb 19-8:47 AM

Sep 26-6:52 PM

$r \rightarrow$ Linear Correlation Coef.

$$
-1 \leq r \leq 1
$$

when r is close to ± 1,
Linear Correlation is Significant when r is close To 0 ,

Linear Correlation is not significant.

Consider the chart below

x	y
1	5
2	12
3	10
3	15
5	18

$x \rightarrow L 1, y \rightarrow L 己$
use $\operatorname{LinReg}(a+b x)$ with
LIsLE T_{0} find
$\sqrt{ } a=3.727 \approx 4$
$\sqrt{b}=2.955 \approx 3$
Coed. of determination

$$
r^{2} \approx 78 \%
$$

78% of Y-values are $/ r=.885$ Linear Correlation explained by x-values.

$$
r^{2}=.784 \approx 78 \%
$$ significant.

How to find $a \dot{\varepsilon} b$ using formula:

$$
\begin{aligned}
& \begin{aligned}
a & =\frac{\sum y \cdot \sum x^{2}-\sum x \cdot \sum x y}{n \sum x^{2}-\left(\sum x\right)^{2}} \\
& =\frac{60 \cdot 48-14 \cdot 194}{5 \cdot 48-14^{2}}
\end{aligned} \\
& \eta=5 \\
& \sum x=14 \\
& \sum x^{2}=48 \\
& \sum y=60 \\
& \sum y^{2}=818 \\
& \sum x y=194 \\
& =\frac{164}{44}=3 . \overline{72} \approx 4 \\
& b=\frac{\eta \sum x y-\sum x \sum y}{n \sum x^{2}-(\Sigma x)^{2}} \quad \frac{5 \cdot 194-14 \cdot 60}{5.48-14^{2}}=\frac{130}{44} \\
& =2.955 \approx 3
\end{aligned}
$$

How to find r using formula:

$$
m=5
$$

$$
\begin{aligned}
& \begin{array}{ll}
r=\frac{n \sum x y-\sum x \sum y}{\sqrt{n \sum x^{2}-\left(\sum x\right)^{2}} \sqrt{n \sum y^{2}-\left(\sum y\right)^{2}}} & \begin{array}{l}
\sum x=14 \\
\sum x^{2}=48 \\
\sum y=60 \\
\sum y^{2}=818
\end{array} \\
=\frac{5 \cdot 194-14 \cdot 60}{\sqrt{5 \cdot 48-14^{2}} \sqrt{5 \cdot 818-60^{2}}} & \sum x y=944 \\
& =\frac{130}{\sqrt{44} \sqrt{490}}=\frac{130}{\sqrt{21560}}=\boxed{885} \\
\text { For } r^{2}=(.885)^{2}=.783 \approx 78 \%
\end{array}
\end{aligned}
$$

Sep 26-7:34 PM

I randomly selected 8 days, below are my walking time, and next day blood sugar level.

walk time	B.S. level	
70	140	Walk time $\rightarrow x \rightarrow L 1$
15	125	B.S. level $\rightarrow y \rightarrow L 2$
20	110	Lin Reg $(a+b x)$ with LI E.L2
10	135	
20	115	$a=144.375 \approx 144$
30	100	$b=-1.25 \approx-1$
35	105	
40	100	$r^{2}=.833 \approx 83 \%$

Regression line

$$
r=-.913
$$

$$
\begin{aligned}
& y=a+b x \\
& y \approx 144-x
\end{aligned}
$$

Coff. of determination

$$
r^{2}=83 \%
$$

Linear Correlation Coff.

$$
r=-.913
$$

It is close to -1, so it is considered significant.

Two branches in statistics:

1) Descriptive
c) Inferential

How to make predictions:
If r is significant \Rightarrow use the regression line Plug in x-value To Predict Y-value.
If r is not significant \Rightarrow use \bar{Y}
for last example

$$
\bar{y}=\frac{\sum y}{n} \text { or }
$$

$$
\begin{aligned}
\bar{y} & =116.25 \\
& \approx 116
\end{aligned}
$$

$$
\text { VARS } 5: \text { statistics }
$$

$$
5: \bar{y} \text { Enter }
$$

Sep 26-7:51 PM

Study time	exam Score
8	75
7	70
9	84
10	95
5	65
12	100

Regression line
Study time $\rightarrow x \rightarrow L I$
exam Score $\rightarrow y \rightarrow L 2$
$\operatorname{Lin} \operatorname{Reg}(a+b x)$ with LI غ LL
$a=34.102 \approx 34$
$b=5.576 \approx 6$

$$
y \approx 34+6 x
$$

$$
r^{2}=.938 \approx 94 \%
$$

$$
r=.969
$$

94/. of exam Scores are explained by study time

Predict exam Score for Someone that studied 10 hrs for the exam

1) Assume r is significant
use Regression line $y=34+6 x$

$$
y=34+6(10)=34+60=94
$$

2) Assume

r is not significant.
use \bar{y} for prediction value VARS 5: Statistics $5: \bar{y}$ Enter

$$
\bar{y}=81.5 \quad \bar{y} \approx 82
$$

Introduction To Probabilities:
$E \rightarrow$ Desired event (outcome)
$P(E) \rightarrow$ Prob. that E happens.
$P(E)=\frac{\text { Total \# of all desired outcomes }}{\text { Total \# of all outcomes }}$ There are 25 students, 10 males and 15 females. Let's random /y Select one Person

$$
\begin{aligned}
P(\text { Select a female }) & =\frac{\text { Total \# of all females }}{\text { Total \# of people }} \\
& =\frac{15}{25}=\frac{3}{5}
\end{aligned}
$$

A standard deck of playing Cards has 52 Cards, 4 Aces.
Let's randomly draw one Card,

$$
\begin{aligned}
P(\text { draw an ace }) & =\frac{\text { Total \# of aces }}{\text { Total \# of cards }} \\
& =\frac{4}{52}=\frac{1}{13} \text { o }
\end{aligned}
$$

$4 \div 52$ MATH 1: frack Enter
If we randomly Select one person, find the Prob. That he/she had a birthday this month

$$
\frac{1 \text { month }}{12 \text { months }}=\frac{1}{12}
$$

Sep 26-8:27 PM

Do You Support tougher Gun Laws?

	Yes	No	Total
Males	15	45	60
Females	25	15	40
Total	40	60	100

If we randomly Select one of these people,

$$
\begin{aligned}
& P(\text { Male })=\frac{60}{100}=.6 \quad P(\text { Yes })=\frac{40}{100}=.4 \\
& P(\text { Male and Yes })=\frac{15}{100} \quad P(\text { Male or Yes }) \\
&=15 \quad=\frac{85}{100}=.85
\end{aligned}
$$

Acceptable Form of answers:

1) Reduced fraction
2) Round to 3-decimal places
3) Scientific Notation

Some rules $\dot{\varepsilon}$. Terminologies

1) $0 \leq P(E) \leq 1$
2) Sum of all prob. is always 1.
3) $P(E)=1 \Leftrightarrow$ Sure event
4) $P(E)=0 \Leftrightarrow$ Impossible event
5) $0<P(E) \leq .05 \Leftrightarrow$ Rare Event
$E \rightarrow$ Desired event
$\bar{E} \rightarrow E$-bar, E-Complement, Not E

$$
P(E)+P(\bar{E})=1 \quad \begin{aligned}
& \text { Complement Rule } \\
& P(\bar{E})=1-P(E)
\end{aligned}
$$

Adeck of playing Cards has 52 Cards, and 12 are fare Cards. Let's draw one Card

$$
\begin{aligned}
& P(\text { Face })=\frac{12}{52}=\frac{3}{13} \\
& P(\overline{\text { Face }})= \frac{40}{52}=\frac{10}{13} \rightarrow \frac{3}{13}+\frac{10}{13}=\frac{13}{13}=1 . \\
& P\left(\overline{\text { Fare })}=1-P(\text { face })=1-\frac{3}{13}=\frac{10}{13}\right. \\
& 1-3313 \text { Math } 1: \text { Enact Enter }
\end{aligned}
$$

Addition Rule
Keyword: $O R$ Single-Action Event

$$
\begin{aligned}
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) \\
& P(A)=.4 \quad, P(B)=.7 \quad P(A \text { and } B)=.25 \\
& P(\bar{A})=1-P(A)=1-.4=.6 \\
& P(\bar{B})=1-P(B)=1-.7=.3 \\
& \begin{aligned}
P(A \text { or } B) & =P(A)+P(B)-P(A \text { and } B) \\
& =.4+.7-.25 \\
& =.85
\end{aligned} \\
& \begin{aligned}
P(\bar{A} \text { or } B) & =1-P(A \text { or } B) \\
& =1-.85=.15
\end{aligned}
\end{aligned}
$$

Sep 26-8:48 PM

$$
\begin{aligned}
& P(H B)=.45 \\
& P(F F)=.35 \\
& P(H B \text { and } F F)=.25 \\
& P(\overline{H B})=1-.45=.55 \quad P(\overline{F F})=1-.35=.65 \\
& \begin{aligned}
P(H B \text { or } F F) & =P(H B)+P(F F)-P(H B \text { and } F F) \\
& =.45+.35-.25=.55
\end{aligned}
\end{aligned}
$$

Mutually Exclusive Events (Disjointed Events) If A and B are M.E.E., then

$$
P(A \text { and } B)=O \text {. }
$$

Suppose $P(A)=.2, P(B)=.7, A \dot{\varepsilon} B$ are

$$
\text { 1) } P(\bar{A})=1-P(A)=
$$

\qquad a) $P(\bar{B})=1-P(B)=$.3
3) $P(A$ and $B)=$ \square 0 Since $A \dot{E} B$ are M.E.E.
4)

$$
\begin{aligned}
P(A \text { or } B) & =P(A)+P(B)-P(A \text { and } B) \\
& =.2+.7-0 \\
& =.9
\end{aligned}
$$

Make Sure to watch all videos on the right-hand side of SG $10-13$.

Class QZ 7
use the chart below
Find

x	y
2	8
4	12
5	15
5	18
8	20

$$
\begin{aligned}
& \left.a=4.775 \approx 5 \quad \begin{array}{l}
a=2.053 \approx 2
\end{array}\right\} \begin{array}{l}
\text { Round to } \\
\text { whole \# }
\end{array} \\
& r^{2}=.869 \approx 87 \% \quad \begin{array}{l}
\text { Round to } \\
\text { while } \%
\end{array} \\
& r=.932 \quad \begin{array}{c}
\text { Round to } \\
\text { 3-decimal } \\
\text { places }
\end{array}
\end{aligned}
$$

